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Abstract. The recently developed energy-scale-dependent Composite Operator Method is applied to the
single-impurity Anderson model. A fully self-consistent solution is given and analyzed. At very low temper-
atures, the density of states presents, on the top of the high-energy background, a Kondo-like peak whose
parameter dependence is discussed in detail. The proposed method reproduces the exact results known
in the literature with very low numerical effort and it is applicable for arbitrary values of the external
parameters.

PACS. 75.50.Ee Antiferromagnetics – 75.30.Et Exchange and superexchange interactions – 75.25.+z Spin
arrangements in magnetically ordered materials (including neutron and spin-polarized electron studies,
synchrotron-source X-ray scattering, etc.) – 75.50.-y Studies of specific magnetic materials

1 Introduction

The theoretical description of strongly correlated electron
systems, like transition-metal oxides [1] and heavy fermion
compounds [2], is of high actual interest and effective an-
alytical methods to study them are looked for. A general
problem consists in connecting the high- and low-energy
scales in a proper way. Methods based on the use of the
equations of motion for the Green’s functions (e.g., the
projection methods [3–13]), usually give a rather reliable
description of the high-energy features of strongly corre-
lated systems, but, quite often, the overall solution ob-
tained by their application does not reproduce the low-
energy physics accurately enough. Other techniques, like
the slave-boson approximation [14], provide a correct pic-
ture at low energies but fail at higher ones. However, there
is an emerging consensus [15] that in strongly correlated
electronic systems we should search for a correct descrip-
tion of both energy scales at once. The anomalous behav-
iors shown by these systems are caused and/or influenced
by both the broad incoherent spectral features far away
from the Fermi level and the more dispersive quasi-particle
bands close to it. Recently [16], it was shown how the Com-
posite Operator Method [12,13] (COM) could be used to
resolve coherent low-energy features in a proper way by
solving the SU(N) Kondo model.

The Kondo model should be considered just as a first
step. It contains no charge degrees of freedom of the
strongly correlated impurity level, and it is usually not
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sufficient for a realistic description of 4f -electron spec-
tra. For this latter purpose the single-impurity Anderson
model is much better suited [2]. Furthermore, the solu-
tion of the Anderson model is a building block within the
Dynamical Mean Field Theory [15] (DMFT) algorithm,
which has favored large progresses in the comprehension
of the Mott metal-insulator transition phenomenon. The
single-impurity Anderson model is well and widely stud-
ied [17], but the reliable methods are rather involved (e.g.,
quantum Monte Carlo method [18], Bethe ansatz [19], nu-
merical renormalization group [20] and non-crossing ap-
proximation [17]) and require a quite huge computational
effort. This is certainly an obstacle to use them within the
DMFT algorithm or to interpret the realistic spectra of
rare-earth compounds. According to this, we present here
a simple analytical method to solve the single-impurity
Anderson model, which is capable to reproduce both the
high- and the low-energy features, as known after the ex-
act solution [17], in a reasonable way and, practically,
without requiring any computational effort at all.

2 Hamiltonian and equations of motion

The single-impurity Anderson model is defined by the
Hamiltonian

H =
∑
k,σ

εkc
†
kσckσ +

∑
σ

εff
†
σfσ + Unf↓nf↑

+
V√
N

∑
k,σ

(
c†kσfσ + f †

σckσ

)
, (2.1)
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where ckσ represents the electrons in the valence band (εk)
and fσ those at the impurity level (εf ); nfσ is the den-
sity charge operator for the f -electrons of spin σ, N is
the number of sites, U is the Coulomb repulsion at the
impurity level and V is the strength of the hybridization
between the valence band and the impurity level. For the
sake of simplicity, we restrict ourselves to a simple two
(spin) degenerate impurity level (σ = ±1, σ̄ = −σ).

The first step within any method based on the projec-
tion technique consists in individuating an appropriate set
of basis operators. In fact, for strongly correlated systems
the original electronic operators are just the wrong place
where to start any approximate treatment [21]. The elec-
trons completely lose their identities owing to the strong
interactions and other complex excitations appear. These
latter are the only effective quasi-particles present in the
systems and only in terms of them any description of
the dynamics should be attempted. The basis (compos-
ite) operators should be then chosen in order to describe
such excitations. The choice is not easy, but some recipes
could be given [22]. In the present case one should have
as minimal requirement an appropriate description of the
free propagation of c-electrons and the atomic dynamics of
f -electrons. The latter have two possible excitations corre-
sponding to the transitions from |0〉f to |σ〉f and from |σ〉f
to | ↑↓〉f . That leads to the first three basis operators

ψ1σ = c0σ =
1√
N

∑
k

ckσ

ψ2σ = ξσ = (1 − nfσ̄)fσ

ψ3σ = ησ = nfσ̄fσ. (2.2)

It is worth noting that ψ2σ = ξσ = X0σ and ψ3σ = ησ =
σX σ̄2 are the Hubbard operators describing the lower- and
the upper-Hubbard subbands.

These three operators give a very good description of
the high-energy features, but are certainly insufficient to
describe the low-energy ones and the mixing between the
two regimes. Then, in order to overcome such limitations,
we write down the equations of motion for the opera-
tors (2.2)

i∂tckσ = [ckσ, H ] = εkckσ +
V√
N

(ξσ + ησ)

i∂tξσ = [ξσ, H ] = εfξσ +
V

2
c0σ + V πσ

i∂tησ = [ησ, H ] = (εf + U)ησ +
V

2
c0σ − V πσ, (2.3)

and account for the appearance of a new operator, namely
the fluctuation field

πσ = ψ4σ + ψ5σ + ψ6σ, (2.4)

with

ψ4σ =
1
2
(1 − nf )c0σ

ψ5σ = σc0σS
z + c0σ̄S

σ̄

ψ6σ = c†0σ̄fσ̄fσ, (2.5)

where nf = nf↑+nf↓, Sz = (nf↑−nf↓)/2 and Sσ = f †
σfσ̄.

The fluctuation field π describes the coupling of the va-
lence band to density-, spin- and pair-impurity fluctua-
tions and opens the possibility to study the low-energy
dynamics connected with them. According to this, we have
decided to include also the operators (2.5) into the basis
and study the system in terms of this set of six basic exci-
tations. Such basis cannot be considered complete accord-
ing to the fact that an infinite degree of freedom system
possesses an infinite number of operator basis. Then, it is
obvious that the basis is neither unique. In particular, it
has been already mentioned above that many recipes can
be used in order to construct an operatorial basis, each
according to the features of interest. However, as we will
see from the obtained results, this basis seems sufficient
to catch the main features of the dynamics of this system.

In order to be more compact, we rewrite the six basis
operators in spinorial notation

ψ1 = c0 =
1√
N

∑
k ck ψ4 =

1
2
(1 − nf )c0

ψ2 = ξ = (1 − nf)f ψ5 =
1
2
�σ ◦ �nf · c0

ψ3 = η = nff ψ6 = c†0 · ξ ⊗ η.

(2.6)

Here �nf = f † · �σ · f , �σ are the Pauli matrices, · denotes
the scalar product in spin space, ◦ the scalar product in
direct space and ⊗ the tensor product. This notation will
be used hereafter. It should be noted that the exact ex-
pressions of the basis operators have been chosen such
that they transform under the particle-hole transforma-
tion (c0 → c†0 and f → f †) into themselves or into an-
other basis operator: ψ1 → ψ†

1, ψ2 → ψ†
3, ψ3 → ψ†

2 and
ψn → −ψ†

n for n = 4, 5, 6.
As next step, we derive the equations of motion for the

retarded Green’s functions (GF)

Gnm(ω) = F
〈
R

[
ψn(t)ψ†

m(t′)
]〉

= F
[
θ(t− t′)

〈{
ψn(t), ψ†

m(t′)
}〉]

(2.7)

where F stays for the Fourier transform and R for the
retarded time ordering operator. The inhomogeneous term
in the equations of motion for the Green’s functions Gnm

is constituted by the normalization matrix (its expression
in terms of basic field correlators is given in Eq. (A.1) of
Appendix A)

Inm = 〈{ψn(t), ψ†
m(t)}〉, (2.8)

where {−,−} stays for the anticommutator and 〈−〉 for
the thermal average. The normalization matrix is not
only fundamental to derive the Green’s functions but pro-
vides also important information about the total spectral
weights of the fields. Its matrix elements depend on the
expectation values Cij = 〈ψiψ

†
j 〉 (correlation matrix). It

contains for instance the average charge density at the
impurity level 〈nf 〉 = 2(1 − C22 − C33), and the double
occupancy Df = 〈nf↑nf↓〉 = 1 − C22 − 2C33. For further
use we define also the matrix elements with the fluctuation
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field, i.e., Inπ = 〈{ψn(t), π†(t)}〉. Then, after the equations
of motion (2.3), we have the following expressions for the
Green’s functions

G11 = Γ0 + V 2Γ 2
0 (G22 + 2G23 +G33)

G22 = I22
Γ+

F
+
B2

+

F 2
Gππ +

B+(C+ + x+C−)
F 2

G33 = I33
Γ−
F

+
B2

−
F 2

Gππ − B−(C− + x−C+)
F 2

G23 = x−G22 −
V Γ−
F

(B+Gππ + C+ + x+C−) (2.9)

where we introduced the following abbreviations

Γ0 =
1
N

∑
k

1
ω − εk

Γs =
1

ω − εs − V 2Γ0/2

xs =
1
2
V 2Γ0Γs Bs = V Γs − V xsΓs̄

C+ =
(
I2π+

1
2
V Γ0I1π

)
Γ+ C− =

(
I3π+

1
2
V Γ0I1π

)
Γ−

F = 1 − x+x−
(2.10)

with s = ±, s̄ = −s, ε+ = εf , and ε− = εf +U , to shorten
the notation. It is worth noticing that Γ0(ω) is just the free
(V = 0) propagator for c0 operator. We see from (2.9)
that we can calculate the Green’s function for the valence
electrons G11 and the f -impurity Gff = G22 + 2G23 +
G33 once we know the Green’s function of the fluctuation
field Gππ.

3 High- and low-energy scales

In order to resolve the low-energy features embedded in
the high-energy background, following the idea given in
reference [16], which is based on the well-established phys-
ical assumption that at low energies we have a quasi-
particle theory [17] as also derived by the slave-boson
theory [14], we split the dynamics of the fluctuation field
into an high- and a low-energy part. As the essence of
the Kondo effect consists in the coupling of the valence
band to the spin fluctuations at the impurity level, we
split only ψ5 as

ψ5 = ψH
5 + ψL

5 (3.1)

and assume instead that the charge (ψ4) and the pair (ψ6)
terms in the fluctuation field are sufficiently well repre-
sented by their high-energy parts only (ψ4 = ψH

4 and
ψ6 = ψH

6 ). In practice, we assume that the low-energy
field ψL

5 spans a different energy sector of the Hilbert
space with respect to ψH

5 , ψ4, ψ6, and describes a coher-
ent quasi-particle at very low energies; energies that are
much smaller than any other defined in the Hamiltonian.
According to this, we make the following ansatz

i∂tψ
L
5 =

[
ψL

5 , H
]

= κ1c0 + κ2ξ + κ3η. (3.2)

The coefficients κi (i = 1, 2, 3) are determined by project-
ing onto the basis (2.6)

κ1 = V
(
IL
25 + IL

35

)
κ2 = εfI

L
25/I22 + V IL

55/(2I22) (3.3)

κ3 = (εf + U)IL
35/I33 − V IL

55/(2I33)

with
IL
5i =

〈{
ψL

5 , ψ
†
i

}〉
. (3.4)

After equation (3.1) and the above reported consequent
reasoning, we split the still unknown Green’s function
Gππ = F〈R [π(t)π(t′)]〉 into a low-energy component
GL

ππ = F〈R
[
πL(t)πL(t′)

]
〉 = F〈R

[
ψL

5 (t)ψL
5 (t′)

]
〉 = GL

55

and in a high-energy one GH
ππ = F〈R

[
πH(t)πH(t′)

]
〉 =∑6

n,m=4 F〈R
[
ψH

n (t)ψH
m(t′)

]
〉. We neglect the cross-term

F〈R
[
πL(t)πH(t′)

]
〉 according to our previous assumption

of no-overlap of the energy sectors spanned by ψL
5 and

all other fields involved. According to equation (3.2), GL
55

obeys the following equation of motion

ωGL
55 = IL

55 + κ1G
L
15 + κ2G

L
25 + κ3G

L
35 (3.5)

where GL
i5 = F〈R

[
ψi(t)ψL

5 (t′)
]
〉. Then, for the sake of

consistency, we approximateGL
i5 (see Appendix B for com-

plete expressions) only by those components that are ex-
plicitly proportional to GL

55, i.e.,

GL
15 = V Γ0

(
GL

25 +GL
35

)
GL

25 =
B+

F
GL

55

GL
35 = −B−

F
GL

55 (3.6)

and we finally obtain

GL
ππ = GL

55 =
IL
55

ω −Ω0

Ω0 =
(κ1V Γ0 + κ2)B+ − (κ1V Γ0 + κ3)B−

2F
. (3.7)

It is worth noticing that, in determining the actual ex-
pressions for GL

i5, we have neglected both the cross-terms
F〈R

[
ψH

i (t)ψL
5 (t′)

]
〉 with i = 4, 5, 6, according to our pre-

vious assumption of no-overlap of the energy sectors, and
those terms proportional to Γ and Γs, according to the
well-defined high-energy character of these latter.

We are now left with the task of computing the
high-energy contribution GH

ππ =
∑6

n,m=4G
H
nm where

GH
nm = F〈R

[
ψH

n (t)ψH
m(t′)

]
〉. In order to accomplish

this task, we use the mode-coupling approximation [23],
also known as self-consistent Born approximation. In
practice, we neglect the mixing terms among different
bosonic modes (i.e., we take GH

45 = GH
46 = GH

56 =
0) and decouple the remaining corresponding time-
ordered propagators in terms of the charge (S0 =
F〈T [nf (t)nf (t′)]〉), spin (Sz = F〈T [Sz(t)Sz(t′)]〉) and
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pair (Sp = F〈T
[
f↓(t)f↑(t)f

†
↑ (t′)f †

↓ (t′)
]
〉) impurity time-

ordered propagators, and of the valence electron time-
ordered propagator (S11). For instance, we have

SH
55(ω) = 3

i
2π

∫
dΩSz(ω −Ω)S11(Ω). (3.8)

Actually, for energies as high as those we intend to de-
scribe in the high-energy sector and as far as the impurity
level is not too deep inside the valence band (i.e., for |εf |
not too small with respect to the bandwidth) we can safely
take the atomic limit for the spin, charge and pair im-
purity propagators. In the high-energy regime, any other
treatment would not substantially affect our results (i.e.,
by taking the atomic limit we already get an accuracy of
the same order of the energy scale we are computing). For
instance, we have

Sz(ω) = −1
4
2iπ [〈nf 〉 − 2Df ] δ(ω). (3.9)

Then, in the symmetric case (−2εf = U , leading to 〈nf 〉 =
1), all the non-zero contributions are proportional to G11,
namely

GH
44 =

1
4
(1 − 〈nf 〉 + 2Df )G11

GH
55 =

3
2
(〈nf 〉/2 −Df ))G11

GH
66 = −DfG11. (3.10)

Finally, we can write the following expression for the fluc-
tuation field Green’s function Gππ , which take into ac-
count both high- and low-energy contributions

Gππ =
(

1
4

+
〈nf 〉

2
− 2Df

)
G11 +GL

55. (3.11)

For εf outside the valence band we have numerically
checked that the influence of the double occupancy Df

in equation (3.11) is very small and could be neglected.
This latter procedure has been adopted in the asymmet-
ric case (as U has always been taken much larger than
the bandwidth) with the result that equation (3.11), with
Df = 0, also holds.

It is worth noting that the high-energy Green’s func-
tion GH

55 exhausts only part of the spectral weight I55, as
expected from an independent evaluation of normalization
matrix,

lim
ω�1

GH
55 =

3
4

(〈nf 〉 − 2Df)
ω

	= I55
ω

= lim
ω�1

G55 (3.12)

which can be derived from (3.10) using limω�1G11 =
1/ω. On the contrary, we have: limω�1 ωG

H
44 = I44 =

limω�1G44 and limω�1 ωG
H
66 = I66 = limω�1G66. This

consideration is fundamental as explains why we are al-
lowed/forced to consider the possibility of a low-energy
contribution to the dynamics and why we can/have to
concentrate on the spin fluctuations.

4 Self-consistency

In order to finally compute the GF in a self-consistent way,
one has to take into account two aspects. First of all, we
have to determine the matrix elements of the normaliza-
tion matrix by calculating the expectation values

Cij = 〈ψiψ
†
j 〉 =

∫
dω[1 − fF(ω)]Aij(ω) (4.1)

where Aij(ω) = − 1
π
[Gij(ω)] and fF is the Fermi func-

tion. Second, a self-consistent calculation of the low-
energy parts of the spectral weights IL

25, I
L
35, and IL

55 is
needed in order to determine GL

55 (see Eq. (3.6)). For that
purpose we start from the total spectral weights I25 =
−3C12/2, I35 = −3C13/2, and I55 = 3

4 (〈nf 〉 − 2Df )+C15.
Then, for a given temperature T and for given low-energy
contributions IL, one can determine the total weights I,
written schematically as I[T, IL], by exploiting the well-
known connection between the correlation and the Green’s
function matrices (4.1). To extract the weight connected
with the low-energy part, we compare the spectral weights
calculated for IL = 0 (defining IH [T ] = I[T, IL = 0])
with the complete expression. Then, the required self-
consistency condition can be written as

IL[T ] = I[T, IL] − IH [T ]. (4.2)

This procedure has demonstrated to be capable to grasp
part of the effects connected with the mixing between
the high- and low-energy sectors. To calculate C12, C13,
and C15 we need also the corresponding Green’s func-
tions whose expressions are given in the Appendix B for
completeness.

5 Numerical results

The numerical calculations have been performed with a
density of states for the valence band electrons ckσ which
is constant and finite only between energies −D and D.
That is, we have used a free (V = 0) propagator Γ0(ω)
for c0 with the following well-known expression [24]

Γ0(ω) =
1

2D
ln

∣∣∣∣D + µ+ ω

D − µ− ω

∣∣∣∣ − iπ

2D
θ(D − |ω + µ|). (5.1)

We have given the formula for an arbitrary value of the
chemical potential µ. The expectation values at finite
temperature T have been calculated by means of the
Matsubara formalism

Clm =−2T�
[ ∞∑

n=0

(
Glm(iωn) − Ilm

iωn − ε

)]
+[1−fF(ε)]Ilm

(5.2)
where ωn = (2n+ 1)πT . The arbitrary small number 0 <
ε� 1 and the Fermi function fF have been introduced in
order to ensure the correct behavior at high frequencies.



A. Avella et al.: The energy-scale-dependent composite operator method for the single-impurity Anderson model 469

ω

ω

ε

Fig. 1. Impurity density of states in the symmetric case for
different positions of the impurity level. The parameters are
V = 0.5, T = 0.001, D = 1, and U = 0, 1.2, 1.6, 2.0, . . ., 4.

The zero-order Green’s function along the imaginary axis
is given by

Γ0(iω) =
1

2D
ln

√
(D + µ)2 + ω2

(D − µ)2 + ω2

+
i

2D

(
arctan

ω

D + µ
+ arctan

ω

D − µ
− π

)
. (5.3)

Let us start the discussion regarding our results with a
short briefing about the high-energy features. It is worth
noticing that our solution manage to describe the physics
at the energy scale of U in a very effective way by ex-
plicitly taking into account the excitations related to the
Hubbard subbands. In Figure 1, in fact, we can clearly
see that the relevant features are correctly reproduced: the
splitting of the non-interacting band into two subbands for
finite values of U , a distance in energy between the centers
of mass of the two subbands almost equal to U , spectral
weights independent of bare U , but strongly dependent
on the ratio V/U . As regards the scale of energy V , we
use a basis rich enough to give the exact solution in ab-
sence of U : second order (V 2) resonant behavior, spectral
weights satisfying the ordinary sum rules. Then, higher or-
der processes ruled by the competition of these two scales
of energy (the localizing U and the dispersing V ), and
strictly dependent only on the ratio V/U , are just those
responsible for the low-energy features we will discuss in
the following paragraphs.

We can now move to the study of the low-energy
features (whose description is the actual goal of this
manuscript) and, in particular, to the analysis of the evo-
lution of the Kondo peak by moving the impurity level to-
wards the valence band in the symmetric case (see Fig. 1).
The peak is widened for decreasing values of |εf | outside
of the band. In that case we have two bound-states at
roughly ±εf which are not shown in Figure 1. For |εf |
inside of the band we can observe a characteristic three
peak structure. Remarkably, the central peak height is not
changed and identical to the height for U = 0, in agree-
ment with the Fridel sum rule. All these features are in

ω

ω
ε

∞

Fig. 2. Kondo peak in the asymmetric case with the param-
eters εf = −2, V = 0.7, D = 1, µ = 0, and T = 0.001. The
width of the Kondo peak diminishes with increasing Hubbard
correlation U [IL

55 = 0.374 for U = 4 (symmetric case), 0.287
for U = 6, 0.215 for U = 8 and 0.068 for U = ∞].

Fig. 3. Kondo-temperature in the symmetric case in depen-
dence on the exchange coupling J compared with the formula
given in the text.

agreement with the exact behavior known from the nu-
merical renormalization group [17].

Figure 2 shows results in the asymmetric case. The
Kondo peak is shifted slightly above the Fermi level and
its shape becomes asymmetric. Furthermore, the width of
the Kondo peak is decreased in agreement with the reduc-
tion of the Kondo temperature. It is worth noting that the
Kondo peak also remains for U → ∞. If we increase the
temperature, the Kondo peak vanishes by diminishing its
width (not shown). We have defined the Kondo tempera-
ture as the one at which the parameter IL

55 has a change
in the concavity when plotted as a function of the tem-
perature. The Kondo temperature becomes exponentially
small for small values of J = V 2(1/|εf | + 1/|εf + U |)
in agreement (see Fig. 3) with the formula [17] TK =
D
√

2Jρ0 exp [−1/(2Jρ0)], where ρ0 = 1/(2D) is the den-
sity of states of the unperturbed valence band at the Fermi
level. It is worth noting that this formula is correct only in
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I =




1 0 0
1

2
(1 − 〈nf 〉) 0 0

0 1 − 〈nf 〉/2 0 −1

2
C12 −3

2
C12 C13

0 0 〈nf 〉/2 −1

2
C13 −3

2
C13 C12

1

2
(1 − 〈nf 〉) −1

2
C12 −1

2
C13

1

4
(1 − 〈nf 〉) +

1

2
Df 0

1

2
C16

0 −3

2
C12 −3

2
C13 0

3

4
(〈nf 〉 − 2Df ) + C15 0

0 C13 C12
1

2
C16 0 Df + C14




(A.1)

the symmetric case and for J � D. We have a strong de-
pendence on the value of the hybridization V that shows a
lack of universality. Anyway, the linear behavior at small J
is preserved for any value of V showing that the exponen-
tial dependence, which is not possible to obtain pertur-
batively, is correctly described. We also studied the infi-
nite bandwidth case, but it does not give any qualitative
change to the physical picture described above.

In conclusion, a recently developed energy-scale-
dependent approach [16], which is capable to reproduce
in a reasonable way both high- and low-energy features of
known exact solutions of impurity models, has been ex-
tended to the case where relevant charge fluctuations are
present. The originating procedure, the Composite Opera-
tor Method [12,13], provides a fully self-consistent solution
where, on the top of a broad high-energy background, a
Kondo peak is present at low temperatures. The param-
eter dependencies of the peak features and of the Kondo
temperature have been correctly reproduced, with respect
to the exact results known in the literature, with very low
numerical effort.

A.A. wishes to thank Dario Villani and Gabriel Kotliar for
many useful discussions on the subject and for all the prelimi-
nary work done together.

Appendix A: The normalization matrix

The normalization matrix is found to be

see equation (A.1) above.

Appendix B: The self-consistency cycle

To close the self-consistency cycle, the following GF are
needed

G12 = V Γ0(G22+G23) G13 = V Γ0(G23+G33), (B.1)

and

G15 = V Γ0(G25 +G35)

G25 =
B+

F
Gπ5 +

(C5+ + x+C5−)
F

(B.2)

G35 = −B−
F
Gπ5 +

(C5− + x−C5+)
F

where we have in close analogy to (3.11)

Gπ5 =
3
2

(
〈nf 〉

2
−Df

)
G11 +GL

55 (B.3)

and C5+ = I25Γ+, and C5− = I35Γ−.
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